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The relationship between tensile and 
bending properties of non-linear 
composite materials 

V. LAWS 
Building Research Station, Building Research Establishment, Garston, Watford, UK 

The effect of a Weibull distribution of flaws on the strength on non-linear composite 
materials is considered. The tensile strength applying in bending is compared with that in 
direct tension. This leads to an estimate of the ratio modulus of rupture to ultimate 
tensile strength for composite materials. 

1. Introduction 
In recent years considerable research effort has 
been devoted to the development of composite 
materials based on a brittle matrix, notably 
cement or gypsum plaster reinforced with glass or 
other fibres. These new materials are usually non- 
linear, although some, for example grc, become 
brittle under some conditions of storage [1]. The 
application of these new materials requires detailed 
knowledge of their response to stress, and the 
interrelationship between the response to stresses 
differently applied. The immediate need is to 
define the relationship between behaviour in 
tension and in bending. 

For linear materials free from flaws, the tensile 
strength measured directly and that calculated 
from bending should be equal. In practice this is 
usually not the case and the material shows a 
distribution of breaking strengths; an adjustment 
has then to be made for the effect of the non- 
uniform application of the stress in bending. 
Weibull [2] has proposed a statistical method t o  
determine the strength of a brittle material. The 
method allows for specimen size, a scatter of 
failure strengths (i.e. flaws) and a distribution of 
applied stresses. 

Where the material is non-linear, and shows a 
distribution of flaws, the situation is more com- 
plicated. Previous work has defined the response 
in bending given a knowledge of the actual tensile 
stress-strain curve [3], or that predicted from 
fibre and matrix properties [4], but neglects the 

effect of a distribution of materials strength. Later 
work [5] has shown how the tensile and com- 
pressive stress-strain curves can be derived from 
the results of a bending test in which the strains 
on both faces are recorded as the load is applied. 
The tensile stress-strain curve that results defines 
the tensile properties operating in bending, for the 
size and shape of the test piece involved, and does 
not necessarily apply in direct tension. Indeed the 
curves calculated from bending and those measured 
directly show significant differences [5]. 

The present paper extends the analysis of the 
effect of a distribution of flaws on the bending 
strength of linear materials, to non-linear materials. 
In particular it considers fibrous composites, 
assuming a Weibull distribution of failure strengths. 
This allows the tensile strength applying in bend- 
ing to be compared with that in direct tension. 

The results of the two analyses, namely, the 
effect of a distribution of failure strengths, and 
the relationship between bending and tensile 
response resulting from the non-linearity of the 
tensile stress-strain curve, taken together, lead 
to an estimate of the ratio of modulus of rupture 
to tensile strength for non-linear materials. 

2. Theoretical considerations 
The probability of failure, P, of a material that has 
a Weibull distribution of flaws throughout its 
volume, V, is given [1] by the expression: 

P = 1 -- exp [-- fOp(a) dV], (1) 
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where q~(o) is a function expressing the strength 
properties of the material. Weibull proposed using 
the function 

r = k go / 

where o is the applied stress; m is a constant 
related to the flaw size distribution and is known 
as the Weibull modulus; au is the stress below 
which no failures occur (usually assumed to be 
zero); and Oo is a normalizing factor. 

Using the function 2, Equation 1 becomes 

P= 1-exp[--;v(a--o---v-~tmdg]. (3) 
\ g o  / 

In the following analyses, it is assumed that au = O. 

2.1. Linear materials 
In the case of  a uniform linear material free from 
flaws, the strength in bending or 'modulus of 
rupture' (MOR), and the tensile strength are 
identical, and there is no 'size effect'. In practice 
this is rarely the case: most materials show a 
scatter of failure strengths and the measured 
tensile strength depends on the size of the speci- 
men tested. 

Assuming a Weibull distribution of materials 
strength, Equation 3 can be used to calculate the 
probability of failure when a uniform tensile stress 
is applied over a volume Vt : 

Pt = 1 -- exp -- Vt . (4) 

When a rectangular beam of the same material, of 
volume Vb, is subjected to equal four-point load- 
ing, the stress varies linearly with distance from 
the neutral axis, and (see, for example, [6] ) 

Pb =l--exp[--Vb(abt m (m+31~ ] \ao] 6(m+ ' 
(5) 

where o b is the maximum tensile stress developed 
on the outer tensile face of the beam. 

From Equations 4 and 5 it follows that, for 
equal probabilities of failure, the ratio of the 
strength in flexure, Oh, to the strength in direct 
tension ot, is 

O h =  [Vt 6(m+ 1)2] l/m 
at Vb ( m +  3 ) ]  (6) 

Broutman and Krock [7] relate the Weibull 
modulus m to the coefficient of variation (C of 
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V) of strength. For the 10% C of V commonly 
found for glass reinforced cement (grc) produced " 
and tested at BRE, m is approximately 10. From 
Equation 6 it follows that for samples of equal 
width and thickness, tested in equal four-point 
bending (total span 135mm) and in tension 
(approx 65 mm gauge length) 

Ob 
- -  ~ 1 . 4 .  
ot 

Alternatively, the Weibull modulus can be cal- 
culated from tensile strength data - it is the slope 
of the plot of ln  In [1/(1 -- P)] against In Or. 

2 . 2 .  N o n - l i n e a r  mater ia ls  
If  the material is non-linear, the situation is more 
complicated. Firstly, the stress across the beam in 
bending does not change linearly with distance 
from the neutral axis, and therefore Equation 5 
above does not apply. However, provided that the 
stress distribution in the beam is known, the 
probability of failure can be calculated from 
Equation 3, and compared with the probability of 
failure under uniaxially applied tension to give the 
ratio of tensile strength applying in bending, to 
the strength in uniaxial tension. 

Secondly the shape of the tensile stress-strain 
curve affects the maximum load that can be 
supported in bending. This happens even if the 
material is uniform in properties and does not 
exhibit a scatter of failure strengths. The result 
is that the apparent modulus of rupture is greater 
than the tensile strength [4]. This effect can also 
lead to an increase in the strain on the tensile 
face when the maximum load is reached, beyond 
the failure strain in direct tension [8]. 

In the analysis that follows it is assumed that 
the distribution function, Equation 3, applies 
and ou = 0. Obviously the analysis could be 
performed using any other suitable distribution 
function. 

3. Procedure 
This procedure is as follows: 

(i) The tensile stress-strain curve is used to 
calculate the probability of failure of a beam in, 
for example, four-point bending, assuming a 
volumetric flaw distribution, and using Equation 3 
above. 

Because of the non-linearity of the stress-strain 
response in tension, the probability of failure in 
bending has to be calculated numerically. This 



requires that the distribution of stress both along 
the length of the beam and through its thickness, 
is known. 

In the central portion of the beam, where the 
bending moment is constant, the stress distribution 
through the thickness of the beam when the stress 
on the tensile face is %,  is simply calculated from 
the balance of forces condition. This distribution 
is constant along the length of the beam between 
the central supports. 

Over the outer lengths of the beam, the bending 
moment varies linearly with distance. The proce- 
dure then, is to calculate the bending moment as a 
function of increasing tensile strain and hence to 
relate the distance along the beam to the stress on 
the tensile face. The stress distribution through 
and along the beam is thus defined, and the full 
integration implied in Equation 3 can be per- 
formed numerically. 

The stress that would be needed to produce 
equal probability of failure in direct tension is 
then calculated from Equation 4. This gives the 
ratio Oh/Or, the 'size effect' correction. 

(ii) The tensile stress-strain curve is used to 
calculate the apparent maximum tensile stress in 
the beam at failure (modulus of rupture, MOR, 
calculated from elastic bending theory). The 
method of calculation (see, for example, [9]) is 
well estabished. The tensile stress-strain curve 
used should be that applying in bending (tensile 
strength %).  The ratio of modulus of rupture to 
tensile strength, MOR/ob, is that arising from non- 
linearity of the tensile curve (the 'shape factor'). 

(iii) The product (O'b/O't) • (MOR/ob) gives the 
expected ratio MOR/ot that allows for both the 
size effect and the shape factor. This is commonly 
described as the MOR/UTS (ultimate tensile 
strength) ratio. 

4. Application and discussion 
4.1. Compar ison o f  tensi le st rengths 

app ly ing  in bending and in 
uniaxia l  tension 

Previous work [5, 9] has shown that the expected 
bending response calculated from the measured 
tensile stress-strain curve commonly falls short of 
that observed experimentally. In particular the 
strain on the tensile face at maximum bending 
load is often very much higher than the failure 
strain in direct tension. Part of this increase can 
be explained if there is a stress capacity after 
failure in tension [8, 9], but a discrepancy still 

remains. This is confirmed by recent work [5] in 
which tensile stress-strain curves deduced from 
bending data, were compared with those measured 
directly. For brittle and ductile materials alike 
(an asbestos cement and a ductile grc), both the 
stresses and strain at failure deduced from bending 
were higher than those measured. 

A possible reason for the discrepancy could be 
the effect of a distribution of failure strengths. 
Assuming a Weibull modulus of 10, and the 
measured tensile stress-strain curves shown in 
Figs. 1 and 2, the calculated ratios Oh/Or for the 
specimen dimensions used (tensile gauge length 
65 ram; four-point bending with inner and outer 
spans of 134ram and 289mm, respectively)are 
1.12 and 1.05 for the asbestos cement and the 
grc, respectively. The specimens were 50ram 
wide and approximately 9ram thick. The cal- 
calculated value of % is 24.5 MN m -2 for asbestos 
cement and compares closely with the value of 
24MNm -2 deduced from bending data. In the 
case of the grc the comparison is not quite so 
close - the value of % calculated from the tensile 
curve is 13.1 MN m -2 , compared with 14.5 MN m -2 
deduced from the bending data. 

While the calculated ratios Ob/O t are low in 
both cases, they nevertheless have a significant 
effect, since even a small increase in failure stress 
implies a large increase in strain and correspond- 
ingly large effect on the modulus of rupture. 
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Figure 1 Tensile stress-strain curves (A and B) for an 
asbestos cement. Curve A was measured in uniaxial 
tension; curve B was calculated from bending data. 
Curve C is the measured apparent bending stress-strain 
curve corresponding to curve B. 
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PTgure 2 As Fig. 1 for a ductile grc. 
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Furthermore in both cases, the ratio of the 
volumes of the specimens tested in tension and in 
bending is low (0.22). For a volume ratio of 1, 
the ratios ab/at predicted from the tensile stress- 
strain curves would be 1.30 and 1.22, respectively. 
These ratios are somewhat lower than that (1.46) 
which would apply to linear materials tested under 
the same conditions, a result of the "yielding' of 
the composite after the matrix begins to crack. 
For the equal four-point bending rig used for the 
main test programme at BRE (total span 135 mm), 
the calculated ab/a t ratio for the ductile grc is 
1.13, leading to a predicted MOR some 10% or 
more higher than that predicted if the larger rig 
is used. This is consistent with the results reported 
by Singh et al. [10] for the effect of span-depth 
on the MOR of grc. The data of Singh et al. were 
based on tests of the same grc board described 
above (and in Fig. 2). 

4 .2 .  The MOR/UTS ratio of grc 
It has been reported previously [1] that the ratio 
of modulus of rupture (MOR) to ultimate tensile 
strength (UTS) of grc kept in both dry and wet 
environments remains approximately constant 
at about 2.5 : 1 for all ages beyond the early stage 
of cure. At first sight this is surprising particularly 
for prolonged storage in wet environments since 
grc loses its ductility under these conditions and 
becomes essentially a brittle material. The MOR/ 
UTS ratio might then be expected to decrease 
with time of storage as the tensile stress-strain 
curve approaches linearity. 

In some cases, particularly for samples subjected 
to natural weathering, even higher MOR/UTS 
ratios have been observed [11], and there is a 
tendency for these values to increase with age and 
with decreasing glass content. While part of this 
increase can be attributed to the increasing diffi- 
culties in measuring the tensile strength as the 

material becomes more brittle, it is important 
to examine the possibility of there being an 
alternative explanation. 

In previous theoretical treatments (see, for 
example, [4]) the effect of a distribution of 
materials strength has been neglected and the 
MOR/UTS ratio calculated is equivalent to the 
MOR/a b ratio of this present work. Experimentally 
the MOR/UTS ratio measured is equivalent to 
MOR/at. It would be useful then to consider even 
approximately, how the MOR/UTS ratios might be 
expected to vary with age if both 'shape' (MOR/ 
qb) and 'size' (ab/Ot) factors were included. 

Curve A of Fig. 3 shows a representative tensile 
stress-strain curve for grc after an initial damp 
cure of 28 days. The measured curve has been 
extended to higher strains (dotted line) since there 
is evidence that the tensile stress-strain curve 
applying in bending is extended to higher strains. 
Curve B is the stress-strain relationship in bending 
calculated from Curve A. If  ageing were simply to 
reduce the strain at failure along Curve A, the 
appropriate MOR/a b can be calculated by compar- 
ing the apparent bending stress and the correspond- 
ing tensile stress at the same strain, e.g. points B' 
and A'. The MOR/a b ratio increases slightly and 
then decreases as expected as the strain decreases 
(Fig. 4); the increase results from the inflection in 
the tensile stress-strain curve. 

The effect of size (ab/at)  can also be calculated, 
and is also shown in Fig. 4. This is opposite in 
direction to the effect of shape (MOR/ab), the 
ratio decreasing and then increasing as the strain 
is reduced. 

In estimating the MOR/UTS ratio, point B' 
(Fig. 3) should be compared not with point A' 
(i.e. the tensile stress applying in bending), but 
with Point A" (= A'/(ab/at  ), the stress applying 
in direct tension. The resulting relationship MOR/ 
ot is seen (Fig. 4) to remain essentially constant 
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Figure3 Typical stress-strain curve in 
tension for grc (curve A) extended to 
represent stress-strain curve applying 
in bending; and bending curve calculated 
from it (B). 
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Figure 4 Strength ratios ab/Cr t (curve A), 
MOR/cr b (curve B), and MOR/a t (curve 
C) as a function of (tensile) strain. A and 
B refer to strain in bending and curve C 
to strain in direct tension. 
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over most of  the strain (i.e. assumed age) range 
above the elastic limit. 

In this illustration, a Weibull modulus of  10 
has been used, and there is some guesswork in 
the extension of  the directly measured tensile 
stress-strain curve. It has been assumed that 
equal volumes are stressed in the two modes 
(direct tension and bending). Nevertheless the 
calculations suggest that a near constant ratio of  
MOR/at would be expected as grc ages if the 
strain/age relationship holds: and that the ratio 
would be in the region of  the MOR/UTS ratios 
observed experimentally. A similar result obtains 
if it is assumed that ageing reduces the effective 
volume fibre fraction. A more reliable test of  the 
validity of  the method would require tensile 
stress-strain curves as a function of  age, and in 
particular those applying in bending, but suf- 
ficient data are not presently available for analysis. 

Nevertheless the analysis does suggest an 
explanation of  the otherwise unexpected 
results. 

5. Conclusions 
It appears that the Weibull theory can be applied 
usefully to non-linear materials such as fibre- 
reinforced cements, to predict the relationship 
between the tensile strength applying in bending 
and that applying in direct tension. There is 
experimental support that the predicted ratios are 
realistic. In particular the analysis leads to a pre- 
dicted size effect for a ductile grc that is observed 
experimentally. 

In predicting the modulus of  rupture from 
measured tensile stress-strain curves the effect 
of  a distribution of materials strength is normally 
neglected. When the size effect is included, the 
predicted MOR more closely accords with that 
measured. 

The inclusion of  a factor for 'size' as well 
as a factor for the shape of  the tensile stress- 
strain curve offers an explanation for the 

observed near constant MOR/UTS ratio for grc 
as it ages. 
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